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Many engineering and scientific applications require the computation of eigenvalues (and 
eigenvectors) of very large symmetric or Hermitian matrices. We describe a Lanczos 
procedure which allows us to compute either few or many eigenvalues of such matrices in any 
intervals specified by the user. This procedure can even be used to compute all of the eigen- 
values. The desired eigenvalues are computed as eigenvalues of an associated symmetric 
tridiagonal matrix T, whose order depends upon the distribution of the eigenvalues in the 
given matrix A and upon which portions of the spectrum of A are desired. The storage 
requirements depend linearly upon the order of A, if the the storage required to generate the 
products Ax is also linear in the order. The amount of computation required depends directly 
upon the distribution of the desired eigenvalues and upon the cost of computing Ax. 
Numerical results for a very large matrix of order 4900 demonstrate that this procedure can 
be used on very large matrices. 

1. INTRODUCTI~~I 

Many engineering and scientific applications require the computation of eigen- 
values of very large symmetric or Hermitian matrices. We describe a Lanczos 
procedure for computing either few or many such eigenvalues in any intervals 
specified by the user. Numerical results obtained on a very large matrix of order 
II = 4900 demonstrate the effectiveness of this procedure. 

Standard algorithms for eigenvalue computations, such as those found in the 
EISPACK [ 11 subroutine library, are not suitable for large matrices (order n > 2 
These procedures explicitly modify the given matrix A, and therefore have c~rn~~te~ 
storage requirements that depend upon the square of the order of the given matrix 
(i.e., are 0(n’)) and arithmetic operation counts that depend upon the cube of the 
order (i.e., are O(n’)). Alternative procedures based upon computing products of the 
form Ax have been developed for computing a few extremal eigenvalues (and eigen- 
vectors) of large symmetric matrices. See, for example, papers by aige [2-A], 
Stewart 151, Rutishauser [6], Golub [7], Jennings [S], Shavitt et al. 191, ~u~sc~er and 
Kammer [IQ], Cullum and Donath [II], Golub and Underwood [12], and Paslett 
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and Scott [ 131. Much of this research uses some form of Lanczos tridiagonalization 
Lanczos [14] which we will also use and which we describe below. Lanczos 
tridiagonalization has in fact also been applied to the problem of finding many 
extremal eigenvalues (see van Kats and van der Vorst [15-16]), to the problem of 
computing some interior eigenvalues (see Lewis [ 17]), and even to the problem of 
computing all of the eigenvalues (see Edwards et al. [ 181) of very large symmetric 
matrices. In the discussion we will comment on the relationships between our 
proposed algorithm and the algorithms given in [ 161 and [ 181. 

In our algorithm, as in most of the above references, the desired eigenvalues of a 
symmetric IZ X II matrix A are computed as eigenvalues of an associated m x m 
symmetric tridiagonal matrix T,. The order m required is a function of the denseness 
or gaps between the desired eigenvalues of A and the relationship of these gaps to the 
overall gap structure of the other eigenvalues of A. If the storage requirements for 
generating Ax are linear in n (i.e., O(n)), then the overall storage requirements of our 
procedure are also linear in II. Moreover, if the products Ax can be generated in O(n) 
arithmetic operations, then the overall cost of the arithmetic operations may be only 
O(kn), where k is the number of distinct eigenvalues desired. Associated computer 
programs are contained in [ 191. Associated eigenvector computations are discussed 
in [20]. 

In Section 2 we describe Lanczos tridiagonalization and define what we call the 
Lanczos Phenomenon. In Section 3 we use this phenomenon together with a 
demonstrated correspondence between Lanczos tridiagonalization and conjugate 
gradient optimization to provide a plausibility argument for the Lanczos eigenvalue 
algorithm that we propose. In Section 4 we define our Lanczos eigenvalue procedure. 

In Sections 5, 6, and 7 we discuss different portions of this algorithm. In Section 5 
we give the cost of computing the associated tridiagonal matrices and give two 
examples to illustrate the dependence of the required size of the tridiagonal matrices 
upon the gap structure in the original matrix. In Section 6 we briefly discuss the 
eigenvalue subroutines used to compute the eigenvalues of the tridiagonal matrices 
generated, and the implementation of the identification test that selects the relevant 
subset of the eigenvalues of the tridiagonal matrix used. In Section 7 two methods for 
computing error estimates are given. These estimates are used to determine 
convergence and also to estimate at any given stage how much more work would be 
required to compute the desired eigenvalues. 

In Section 8 we present the results of several experiments. Test matrices of order 
n = 1600 and IZ = 4900 are considered. The results clearly demonstrate that the 
proposed Lanczos tridiagonalization procedure with no reorthogonalization is a 
powerful procedure for computing any of the eigenvalues of very large symmetric 
matrices. 

We restrict the discussion to symmetric matrices. We will, however, indicate in 
Section 9 how the algorithm can be applied to Hermitian matrices. 
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2. LANCZOS TRIDIAGONALIZATION 

Lanczos tridiagonalization is a general procedure for replacing a given symmetric 
n x n matrix A by a symmetric m x m tridiagonal matrix T,. The tridiagQn~i~a~i~~ 
proceeds as follows. Choose a random starting n-vector zll. Vectors {ul, v2,..., v,] 
spanning the space spanned by the vectors {z~~,Au~,...:A”-~~:~\ are then venerate 
using the Lanczos recursion for i = 1,2,..., m 

where 
Pi+l’i+l =Avi-aivi-fip,vi-l, (1: 

ai = l.q(AVi - PiViM 1) and IPi+ll= jlAvi-aini-Pi”i-lil (‘1 

with U, = 0 and /I, = 0. In exact arithmetic, this recursion successively generates an 
orthonormal set of vectors from the Krylov vectors A%,, k = l,..., m - 1. The aivl 
and the pivi-, are, respectively, the projection of nvi onto ui and vi-i. 

Observe that the matrix A enters Eqs. (1) and (2) only through the Avi term. Also 
observe that at each iteration only the two most recent Lanczos vectors are required, 
Only four vectors of computer storage are required by this recursion, two vectors of 
length IZ and two of length m, plus whatever is required to generate the matrix-v~~~~r 
products Avi. The original version given by Lanczos used different but the~ret~~~ll~ 
equivalent versions of the formulas for the ai and pi. Paige [3-4,211 has shown that 
Eqs. (2) are the most reliable formulas. 

We can rewrite Eq. (1) in matrix form as 

where the associated symmetric tridiagonal matrices T, have diagonal entries 
T,(i, i) = (xi and the principal subdiagonal and superdiagonal entries T,(i, i + 1) = 
T*(i + 1, i) = pi+ 1. All other entries of T, are 0. In Eq. (3), e;fi = (O,,.., 0, I) 
the mth coordinate vector. If we assume that A has n distinct eigenvalues and 
starting vector vi has a nonzero projection on each eigenvector of A, then in exact 
arit~~metic the Lanczos vectors generated are orthanormal for any m < n. In fact, 
Tm = VzAVm is a matrix representation of A on the subspace span 
Lanczos vectors V,. In practice, however, this orthogonality is lost very 
we do not have this precise relationship between T, and A. 

Lanczos made two proposals with respect to Eqs. (I) and (2). First he ~r~~~~~ 
(see Lanczos 127.1) the replacement of any general symmetric system of ~~~~~Q~s 
Ax = b by the much simpler tridiagonal system sf equations T, y = ViO, with 
x = k;, y obtained from Eq. (3). This transformation is valid, however, only if the V,, 
are truly orthonormal, and a straightforward application of this proposal yields 
incorrect answers. Thus, this proposal was rejected initially because of this ~~rner~~~l 
instability. We note in passing that more recent work has shown that an iterative 
version of Lanczos’ proposal can work very well; see Paige and §a~~ders [23j for 
details. 
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Lanczos also proposed [ 141 that the tridiagonalization be used to compute approx- 
imations to the eigenvalues of A. This proposal was not totally rejected but accepted 
only with the additional premise that the global orthogonality of the Lanczos vectors 
must be maintained, otherwise the numbers generated would have no validity. 
Therefore, subsequent algorithms proposed incorporated this premise by continuously 
reorthogonalizing the Lanczos vectors as they were generated. For each value of i in 
Eq. (l), the new Lanczos vector was reorthogonalized with respect to all previously 
generated Lanczos vectors; see, for example, Golub [7], Newman and Pipano [24], 
Paige [25], and Golub and Underwood [12]. Paige [2-41, however, demonstrated 
that (i) good approximations to extreme eigenvalues of A could be obtained even if 
no reorthogonalization was performed; and (ii) the losses of orthogonality in the 
Lanczos vectors were caused primarily by the convergence of eigenvalues of T,,, to 
eigenvalues of A and not simply by cancellation errors as was previously thought. 
Paige also demonstrated that although global orthogonality was lost a localized near- 
orthogonality of the Lanczos vectors persisted as long as the off-diagonal entries pi+, 
of T,n were not too small. This localized orthogonality plays a key role in our 
arguments that the procedure we propose is valid. Note that the extreme eigenvalues 
of a matrix are those eigenvalues on the ends of the spectrum, the algebraically 
largest or the algebraically smallest eigenvalues. 

The observation in [2] of the losses in orthogonality of the Lanczos vectors with 
respect to the converged eigenvectors led to Lanczos algorithms that incorporated 
reorthogonalization with respect to converged eigenvectors of A rather than with 
respect to other Lanczos vectors; see [ 11, 131. (Actually the algorithm in [ 1 l] was 
developed without the benefit of the results in [2]. The argument used in [ 1 I ] to 
justify limiting the reorthogonalization to reorthogonalization with respect to the 
converged eigenvectors, rather than with respect to all of the Lanczos vectors, was 
simply one that compensated for the errors introduced into the Lanczos recursion 
when certain of the Lanczos vectors being generated were not allowed to generate 
descendants because of the observed eigenvector convergence.) This change 
significantly reduces the amount of computer storage and computation required. 
These algorithms work well for computing a few extreme eigenvalues and 
corresponding eigenvectors. However, since they require that at each iteration in the 
algorithm that all of the converged eigenvectors be kept on easily accessible storage, 
it is difficult to use the ideas in [ 111 or [ 131 to compute either large numbers of 
extreme eigenvalues or to compute interior eigenvalues of A. 

It was therefore natural to attempt to use the Lanczos tridiagonalization directly 
with no reorthogonalization not just to get a few extreme eigenvalues as recom- 
mended by Paige [2], but in fact to get many, even all of the eigenvalues of A. The 
Lanczos procedures in [ 161 and in [ 18) do not use any reorthogonalization and 
neither does the procedure described in this paper. The storage requirements for these 
procedures are minimal. Each of these procedures rests upon an empirical obser- 
vation which we call the Lanczos Phenomenon. 

THE LANCZOS PHENOMENON. For large enough m, every distinct eigenvalue of A 
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with an eigenvector that has a non-negligible projection on the starting vector v,) is 
an eigenvalue of T,. 

Note that “large enough m” may be m < 3n, where A is 12 X iz. In Section 5 we give 
an example where m = n is large enough, and also an example where m = 15~ is 
required. The size required depends upon the distribution of the eigenvalues of A. In 
[X-27] we exhibited a mechanism for explaining this phenomenon. We related 
Lanczos tridiagonaiization to the conjugate gradient optimization procedure for 
solving a system of linear equations Ax = v1 with starting iterate x, = 
relationship was then used to obtain a plausibility argument for the ernpir~~ai~~ 
observed Lanczos Phenomenon and for “convergence” of our proposed eige~va~~e 
algorithm. 

When the conjugate gradient optimization algorithm is applied to so1vin.g Ax = c1 ? 
it generates a sequence of iterates xi, i = 1,2,... that successively minimize the 
associated error function f(x) z (x - x*)’ A(x - x*) along A-orthogonal dire~t~~~s 
of change in the parameters x, where x * denotes the solution of Ax = vl. ‘X’Ere 
Lanczos vectors generated using Eqs. (1) and (2) with the starting vector uI can be 
identified with properly chosen multiples of the associated residual vectors, 
ri s -Ax, + v, in the corresponding conjugate gradient optimization applied to the 
system Ax = ~1,) where x, = 0. No attempts will be made to explain this reiati~~s~i~ 
in any detail. Please refer to 1271 for details. Using this re~atio~shi~~ together with the 
local near-orthogonality of the Lanczos vectors, and the fact that the ~o~j~g~te 
gradient optimization procedure for Ax = v, can be shown to converge under fairly 
weak conditions, such as local A-orthogonality of the directions of movement in the 
optimization procedure, we can argue that the following relationship holds. The 
arguments used in [27] were not totally rigorous, however, ~orn~utat~~~a~ 
experiments indicate that this relationship is valid. 

ASSERTION 1271. Assume A is a positive definite matrix. Let .ij be the ~~~t~~~~t 
eigenvalues of A and zj be corresponding orthonormal eigenvectors of A, for 
j= l,..., q. If each of these eigenvectors has a nonzero projection on the starting 
uector ul) then for large m each /Ij is a near-zero of an a~pro~~~ate~y scaled charac- 
ieristic polynomial of T,,, . 

(It should be noted here that the arguments in [X-27] regarding the conjugate 
gradient-Lanczos recursion equivalence require that the matrix A be positive de~r~~te. 
However, the definiteness or indefiniteness of a given matrix does not affect the 
performance of the Lanczos recursion. For a given matrix A, at least ~eoret~~a~~y~ 
the Lanczos recursion generates the same set of Lanczos vectors for any of the 
matrices A + al for any shift CT. Thus, if the given matrix A is not positive definite, we 
can think of applying the conjugate gradient-Lanczos arguments to the matrix A i CZ! 
for some B such that the resulting matrix is positive definite. In actual ~ornp~tati~~s? 
however, one would use the original matrix A. There is no reason to introduce shifts.) 

Thus, arguments using the Lanczos tridiagona~izatio~-conjugate g~a~i~~~ 
optimization relationship lead to a plausible mechanism for the Lanczos 
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phenomenon. Once we believe that for large enough m all of the desired eigenvalues 
are represented among the eigenvalues of T,,,, then we can ask the question whether 
or not we can use this phenonomenon as the basis for an algorithm to compute these 
eigenvalues. If we can, then we will have replaced a general unstructured symmetric 
eigenvalue problem by a highly structured, in fact, symmetric tridiagonal one. 
Depending upon what eigenvalues are desired, the order of the tridiagonal matrix 
may be smaller or larger than the original matrix A. Even if the order of T, is much 
larger than that of A, the gains in the storage and computational requirements from 
using T, instead of A are typically enormous. Eigenvalue subroutines for tridiagonal 
matrices require very little storage, linear in the order of the tridiagonal matrix, and 
the operation count for finding even all the eigenvalues of a tridiagonal matrix is only 
quadratic in the order of the tridiagonal matrix. 

The key to successfully applying the Lanczos Phenomenon is the ability to 
recognize and eliminate the extra eigenvalues that appear because of the losses in 
orthogonality of the Lanczos vectors. For an example of such eigenvalues see Table I. 
A secondary problem is that the multiplicities of the eigenvalues in T, do not 
accurately reflect the multiplicities of the eigenvalues of A. Numerically multiple 
eigenvalues are, however, converged approximations to eigenvalues of A so the false 
multiplicities present a problem only if the user wants not only the eigenvalues but 
also their multiplicities. The real problem is identifying which eigenvalues are not 
relevant. We choose to call such eigenvalues “spurious.” From Webster [28] we have 
the following definition. 

DEFINITION 1. Spurious = Outwardly similar or corresponding to something 
without having its genuine qualities. 

In Section 3 we will give another definition which in fact provides a means for 
identifying such eigenvalues computationally. Before proceeding to describe the 
algorithm that we propose, we have to introduce some terminology. We will then give 
arguments, again using the Lanczos tridiagonalization-conjugate gradient 
optimization relationships, to justify this procedure. First consider the following ter- 
minology. 

For a given value of m, we use fZ to denote the symmetric tridiagonal matrix of 
order m - 1 obtained from T,,, by deleting the first row and column. That is, 

f&i, i) = (Yi + 1 and F2(i, i + 1) =piiZ. (4) 

To be more precise we should use T,., in Eq. (4), but then the notation becomes 
unwieldy. The eigenvalues of T, will be denoted by ,u, < . . + <,u,,, and the distinct 
eigenvalues of A will be denoted by 1, < *.. < a4, where q < n. The characteristic 
polynomial of T, , that is, the determinant of (T, -PI), will be denoted by a,(~) and 
its derivative will be denoted by a;@). Similarly, the characteristic polynomial of FZ 
will be denoted by C&C&). 
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3. PLAUSABILITY ARGUMENT FOR AN ALGORITHM 

For the tridiagonai matrix T, we have the following equality (261. I’his equality is 
valid for any symmetric tridiagonal matrix and is not connected with the Lanczos 
tridiago~alization. If ,D is an eigenvalue of T,) that is, a,(a) E det(T, - ,uQ = 0, then 

Using the Lanczos tridiagonalization-conjugate gradient o~timizatiom re~~t~~~s~~ 
developed in [27], if a,-, s det(T,- i) f 0, we get from Eq. (5) that 

where pm is the norm of the associated residual -.4x, i D‘, in the assQ~i~t~ 
conjugate gradient procedure. (It should be noted here as it was above that t 
arguments in [26-271 regarding the conjugate gradient-La~~~os recursion 
equivalence require that the matrix A be positive definite. However, the ~on~~~~io~s 
that one can obtain using this relationship apply to any symmetric matrix, not just to 
positive definite A.) In [27] we demonstrated that these associated residuals can * 
expected to converge as m -+ 00. If this convergence occurs, then Eq. (6) suggests t 
for large m, any eigenvalue of T, is either close to an eigenvalue of TZ or close to an 
eigenvalue of T,- i . Numerical experiments demonstrated that the TZ matrix could be 
used to identify the extra eigenvalues that appear as ~igenv~ues of T,,, due to the 
losses in orthogonality of the Lanczos vectors. In particular, any simple ei~e~va~~e of 
T,,, that is pathologically close to an eigenvalue of TZ is orie of the extra eigenv~~u~~ 
and should be discarded. We have the following de~nitio~ and identi~cat~~~ test for 
these extra eigenvalues. 

Any simple eigenvalue of T, that is path.olo~i~al~y close to an 
value of TZ will be called “spurious.” 

The remaining eigenvalues of T, are approximating eigenvalues of A. 
as we said earlier, any numerically multiple eigenvaiues of Tm are good approx- 
imations to eigenvalues of A. Heuristic arguments were given in 1271 to explain these 
numerical observations. We repeat some of those arguments here. From the Lanczos 
recursion and a theorem in [21], we have the following theorem. 

THEOREM 1. Let A be a symmetric matrix and T, be a ~orr~s~o~di~~ ~y~di~go~~i 
matrix generated using the Lanczos recursions. Given any eigenvaEue p of Tm and 
corresponding unit eigenvector x with TX =,a~, there is an eigenvalue /z of A such that 

where E, = l/l,, 1 x(m)l, F, = 0(&m [\A Ii), E = “machine epsilon:’ cznd x(m) is the mth 
component of the eigenvector x. 
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If we use the determinant formulas for eigenvectors of any symmetric tridiagonal 
matrix together with the Lanczos tridiagonalization-conjugate gradient optimization 
correspondence, we get the following equality 

Thus, an upper bound on the error in ,u being an eigenvalue of A is given by the 
ratio of the associated conjugate gradient residual pm+i = /J-Ax,+, + zlljl to the 
square root of the product of the derivative of the characteristic polynomial of T, at 
,U and the characteristic polynomial of f2 evaluated at ,D. The U&(U) term in Eq. (8) is 
a measure of how isolated ,U is as an eigenvalue of T,,,, The arguments in [26] tell us 
that we only need consider the isolated eigenvalues of T, because numerically 
multiple eigenvalues of T,,, are accurate approximations to eigenvalues of A. For 
isolated eigenvalues the significant factor in Eq. (8) is C?,(U). In particular, when @ is 
an eigenvalue of p2 the bound in Eq. (8) is relatively large. Of course this is only an 
upper bound on the error. However, general numerical experience indicates that the 
bound in Eq. (7) is a realistic,. if somewhat conservative, bound on the true error. 
Furthermore, since the term in Eq. (8) equals the term in Eq. (7), no further approx- 
imations are made in going from Eq. (7) to Eq. (8). Thus with a high degree of 
probability, simple eigenvalues of T, that are also eigenvalues of fX but not eigen- 
values of Tm-l, are spurious and should be discarded. Numerous numerical 
experiments indicate that this is in fact the case and that this is a very clearcut test. 
Examples of this test are given in Table I. 

In practice the spurious eigenvalues of T, agree with eigenvalues of p2 to within 
the accuracy of the computed eigenvalue of T,,,. (Note that there is an assumption 
here that the eigenvalues of T, are being computed accurately.) Table I contains a 
short interior subsection of the eigenvalues of the Lanczos tridiagonal matrices T, 
and FZ corresponding to a matrix A of order n = 465 with m = 800 and a randomly 

TABLE I 

Identification of Spurious Eigenvalues Using !kz 

No. Eigenvalues T, Eigenvalues ?> Classification 

355 1.6575563665800 1.6761152740989 
356 1.6766121216492 1.6766121216490 
357 1.6766124392162 1.7022717813322 
358 1.7036032894951 1.7048494363508 
359 1.7048494363511 1.7100971481390 
360 1.7116026285662 1.7146602334798 
361 1.7146717833807 1.7301953401951 
362 1.7304603450048 1.7333484894705 
363 1.7333552278471 1.7369962479320 

Spurious 
Good 
Good 
Spurious 
Good 
Good 
Good 
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generated starting vector. Observe two kinds of spuriousness in Table I. ~ige~val~e 
356 of T, is spurious but it is also close to a good eigenvalue which it is attempting 
to replicate. Eigenvalue 359, however, is not replicating a good eigenvalue and is not 
easily recognized as spurious. 

We note that there is some disagreement among researchers on Lanczos methods 
as to the correct name for these extra eigenvalues. Paige [21] calls them redM~da~t 
and in fact in some situations they could be so labelled because they can actually be 
observed converging to a multiple copy of an eigenvalue of A. owever, in general 
this type of behavior is not observed. Spurious eigenvalues can appear in some 
location in the spectrum of T, for some value of m, only to “disappear” from that 
part of the spectrum when m is enlarged and perhaps to “reappear” as a totally 
different eigenvalue in some other part of the spectrum of T,. If we try to track the 
spurious eigenvalues as a function of m by keeping track of the differences between 
the spurious eigenvalues at given values of m and the closest true eigenvalues of R: 
we find that as m changes these spurious eigenvalues approximate different eigen- 
values of A. They do not necessarily attach themselves to particular eigenvalues of A. 

To summarize the preceding discussion: First, numerically multiple eigenvalues of 
T, are accurate approximations to eigenvalues of A. Second, simple eige~val~es of 
T, that are also eigenvalues of FZ are “spurious,” and should be discarded. Thir 
simple eigenvalues of T, that are not eigenvalues of pZ should be kept as a 
imations to the eigenvalues of the given matrix A. In the subsequent discussion we 
will call these latter eigenvalues, along with the numerically multiple ones, “‘good” 
eigenvalues of T,. 

4. LANCZOS EIGENVALUE PROCEDURE 

Lanczos Eigenvalue Procedure 

A-l. For an appropriate choice of m, generate T,. 
A-2. In the subintervals of interest, compute the eigenvalues of T,- 
A-3. Determine the numerical multiplicities of these eigenvalues. 
A-4. Identification Test. For each simple eigenvalue of T,, determine 

whether or not there is an eigenvalue of pZ that is pathologically 
close to it. If there is, label that eigenvalue as spurious, 

A-5. Accept each multiple eigenvalue and each simple eigenvalue that is 
not spurious as an approximate eigenvalue of A, 

A-6. Estimate the errors in the simple “good” eigenvalues. 
A-7. Terminate if the errors are satisfactory. Otherwise, using the error 

estimates as a guide, decide upon an increment for m. Enlarge T, 
and repeat steps A-2 through A-6 on those portions of the 
spectrum that are wanted but that have not yet converged, 

This algorithm implicitly uses the following results of Paige [2,4]. First, local near 
orthonormality of the Lanczos vectors is preserved if the off-diagonal entries 

581/44/2-8 
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T, are not “small.” Here smallness is scaled by the maximum of 1 and the norm of 
A. Thus, the relationship between Lanczos tridiagonalization and the conjugate 
gradient optimization procedure can be expected to be valid and we can expect 
“convergence.” Second, if we have an eigenvalue of T, for which the error estimate 
in Eq. (7) is small, then that eigenvalue is an eigenvalue of Tm+k for any k > 0. Thus, 
there is a great deal of freedom in the choice of m. Third, in any cluster of eigen- 
values of T, there is some related eigenvector x such that I( Vxll is not small. This is 
needed in order to get good error estimates from Eq. (7). 

Using this procedure we have replaced a general unstructured symmetric eigen- 
value computation by a highly structured, in fact, symmetric tridiagonal eigenvalue 
computation. The resulting tridiagonal eigenvalue problem can be completely solved 
in at most O(m’) arithmetic operations, and the storage requirements are O(m), 
where m is the order of the tridiagonal matrix. Typically m is some small multiple of 
n, so that if the matrix-vector products Avi can be computed in O(n) arithmetic 
operations, then the overall eigenvalue computation requires at most O(n2) arithmetic 
operations and O(n) storage. 

5. GENERATION OF T,,, AND SELECTION OF THE ORDER m 

The symmetric tridiagonal matrices T,,, are generated using Eqs. (1) and (2). The 
ai,Pi+ 1 computations require a matrix-vector multiplication Avi, two inner products 
of length n, and an additional 3n scalar multiplications/divisions and 2n 
additions/subtractions. The major storage requirements are two vectors of length m 
for permanent storage of the cli and pi+ r as they are generated and two vectors of 
length n for temporary storage of the vectors vi and vi-r. At the end of the T, 
computation m, a, p, v,, v,+ 1 are stored off-line so that if the computations are 
rerun at another value of m, only the incremental oi, pi+ 1 have to be generated. 

TABLE II 

Cost of 7’, Generationa 

Computation Multiplications/divisions Additions/subtractions 

AUi Pn 
wi=Avi-/livi-, n 
ai = wtrvi n 
zi = wi - aivi n 

Pi+1 = lIzill n 
vi+l =zilPi+I n 

(P- l)n 
n 
n 
n 
n 

Cost/iteration (P + 5) n @+3)n 

“p = average number of nonzero entries in each row of A. For some matrices tht cost of computing 
Aui may be less than (2p - 1) n. 
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The overall costs of the T,,, generation are summarized in Table II. The primary 
cost is the computation of the Avj. The original matrix A a pears only in this 
computation. The subroutine which computes Ax must be optimized to hake 
advantage of any sparsity and/or structure in A. We emphasize that there is no 
requirement that A be sparse. It is only necessary that the AX ~ornp~tati~~ be 
accurate and economical. 

The plausibility arguments for convergence of the eigenvalue procedure require at 
least local near-orthogonality of the Lanczos unit vectors, vi, 1 < i < M. As we 
mentioned earlier, Paige [2] has proved that this local orthogo~ality is preserved as 
long as the pi+ 1 are not too small. To illustrate that in practice the pi do not become 
too small, we list in Table III the minimal Ij3il/jl A// encountered in each of the test 
problems considered in Refs. [20, 26, and 291. //A 11 denotes the spectral norm of 

The user must specify a value for m, the order of the tridiago~a~ T,. ~el~ct~~ 
value that is larger than that needed to obtain the desired eigenvalues results in more 
computation than is necessary. The Lanczos Phenomenon tells us that for 1 
enough m the eigenvalues that we want to compute will appear as eige~va~ues of 
Paige’s results [2] suggest that these accurate approximations to eigenvai~e~ of A will 
be stabilized eigenvalues of T,,,. That is, they will also be eigenvalues of Tm for any 
larger value of m. The problem is to select a large enough m, but not too large in the 
sense of the resulting amount of computation required. 

By example, we illustrate the dependence of the size of T, required upon the local 
density of the eigenvalues of A that we are trying to compute and upon the overall 
gap stiffness of A, We need to introduce the following three ~e~n~t~o~s. 

DEFINITION 3. Given a matrix A with distinct eig~nvalues /1, < /2, < s * a < As, 
define the minimal gap gj for each Aj, j = 2,..., 4 - I as 

gj3min()l,.+,-~j,dj--j_,!. (9) 

Defineg,=(i,-A,) andg,={/2,-dIl,_,j. 

TABLE III 

Minimal ipi+ I l/jjA il 

Test 
matrix 

___-- 

POIS992 [ 26 j 
POIS1008 [29] 
KIRK250 
KIRK567 1261 
KIRK992 1261 
KIRK1089 1201 
KIRK 1600 
KIRK4900 

Order Order 
A T, 

992 5952 
1008 1764 

250 2000 
567 1134 
992 2916 

1089 4904 
1600 4800 
4900 29404 

Minimum 

IBi+*l IIA Ii Ratio 
- _-_-I- 

0.55 4.0 0.14 
0.33 4.0 0.08 
0.85 102.4 0.0083 
1.11 4.7 0.24 
1.57 5.5 0.29 
1.71 102.4 0.017 
1.89 102.4 WlR 
2.29 102.4 a.022 

-l____-l__ I_^-. .- 
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DEFINITION 4. Given the minimal gaps defined in Eq. (9), define the overall gap 
stiffness of the matrix A as 

S, = max gj/min gj. 
.i j (10) 

DEFINITION 5. The stiffness of the matrix A 

o(A) 5 max (ajI/min jlj[. (11) 

Numerical evidence indicates that the convergence of a given eigenvalue depends 
upon the relative position of that desired eigenvalue in the spectrum of A, the local 
gap structure which is partially described by the minimal gaps, and the overall gap 
stiffness. Typically, reasonably well-separated eigenvalues on the extremes of the 
spectrum of A will appear as eigenvalues of T, for relatively small values of m < n. 
Well-separated interior eigenvalues can converge as fast or faster than clustered 
extreme eigenvalues; see [29] for an example. Tightly clustered eigenvalues in the 
interior of the spectrum converge most slowly. If the overall gap stiffness S, is very 
large, one may have to use a very large m, for example, of the order of lOn, to obtain 
good approximations to the eigenvalues with smaller gaps. An exception to this 
comment are pairs of close eigenvalues. Pairs can be computed for reasonable size m. 
The slowdown in convergence occurs when the desired eigenvalues are very close 
together and in sets of three or more. 

Example 1 in this section is a worst case example. The smallest eigenvalues do not 
converge until m = IOn. The problem is the gap structure. Very large eigenvalues with 
very large gaps converge for very small values of m and immediately begin to 
replicate, making it difficult to compute the other eigenvalues. Example 2 is a best 
case. For this matrix all of the minimal gaps gj are in the range 

4 

where g,, s C gj/q. 
j=l 

(12) 

By m = n the eigenvalues of Example 2 are computed to at least lo-digit accuracy. 
In practice, the gap structure of the matrices being considered is somewhere 

between the extremes of Examples 1 and 2. In general for matrices without extreme 
differences in gap structure, most of the eigenvalues of A can often be computed 
readily, typically with m < 3n, where n is the order of A. 

With our procedure it is suggested that if the user has no a priori knowledge of the 
eigenvalue distribution in the given matrix A, then the eigenvalues of T,,,, in the 
desired portion of the spectrum, should be computed for m = 2n or m = 3% along 
with estimates of the accuracy achieved in these computed eigenvalues. (See Section 6 
for the T, eigenvalue computations and Section 7 for the associated error estimates.) 
An examination of the “good” eigenvalues of T, at this size m will yield a reasonable 
picture of the degree of difficulty that exists in computing the remaining desired 
eigenvalues. Typically, at this value of m reasonably well-separated eigenvalues will 
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TABLE IVa 

Order 

7-m 

KIRK323, Using Error Estimate to Identify Convergence 
NX = 19, NY = 17, SCALE = 100, CONC = 0.43 

Good Estimates Multiple 
eigenvalues <lo-* eigenvalues 

IMTQLl version 

- 

Subintervals 
not yet 

converged 
-- 

162(n,‘2) 156 22 4 
324(n) 251 84 27 
486(3n/2) 288 260 67 2 
648(2n) 295 262 130 2 

BISEC version on (-0.0646, -0.0001) and ]lOO.OO, 100.071], the intervals identified at m = 648 

8 10(5n/2) 303 
972(3n) 311 
1615(5n) 323 323 

have converged and “clusters” of eigenvalues can be identified. Unfortu~ately~ we 
cannot give precise definitions for “reasonably close” or “clusters.” 

We illustrate this behavior in Tables IVa and IVb, where we summarize the 
convergence of all of the eigenvalues of a test matrix of order n = 323, KIIXK323, as 
we vary m. This test matrix and those used in Section 8 were obtained from 

Kirkpatrick 1301. We emphasize that in practice one would only consider those eigen- 
values of interest to the user, and that one would probably not increment m ore 

TABLE IVb 

KIRK323, Using Error Estimates to Identify Intervals” 
that Have Not Yet Converged, m = 486 = 3n/2 

Computed eigenvalue Error estimate 

99.69345907221 4.6 x lo-” 99.74121355265 
99.78647655872 4.8 x lo-l2 100.0042901351 

100.0064558804 0.014 100.00894845 i 8 
100.0157798193 0.029 100.0202438828 
100.0266106159 0.058 100.0309946559 
100.0384058572 0.050 IOO.0416252110 
100.0598920091 4.7 x 1o-3 100.06447807 13 
100.0663591154 4.0 x 10-3 100.0701493382 
100.2301831999 1.8 x lo-” 100.2797369242 

Computed eigenvalue Error estimate 

3.4 x lo-l2 
5.4 x 10-3 
0.023 
0.037 
0.083 
0.037 
2.2 x lo-? 
1.5 x lo-* 
9.5 x lo-” 

’ Intervals indicated at m = 486(3n/2) are [-0.076, 0.0071 and 199.99, IOO.OS]. At m = 648(2n), the 
intervals decrease to [-0.0646, O.OOOl] and [ 100.00, 100.071]. 
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than once. We are doing extra computation just to observe the rates of convergence. 
At m = 3rz/2 the error estimates clearly identify the subintervals of the spectrum that 
have not yet converged. Some of these error estimates are given in Table IVb. For 
m = 162 through 648, the counts in Table IV were obtained using the original version 
of our Lanczos procedure which computes all of the eigenvalues of both T,,, and of ?* 
and then uses the error estimates in Eq. (8). This approach is expensive and is not 
recommended. Other versions of our programs, as will be discussed in Section 6, 
compute only the eigenvalues of T,,, and use Sturm sequencing arguments to identify 
the spurious eigenvalues. Error estimates are then computed using inverse iteration on 
T,,,. The polynomials in Eq. (8) were computed using the computed eigenvalues of T, 
and of ?‘*. For m = 810, 972, and 1615, the information in this table was obtained 
using a Sturm sequencing version of our procedure. 

The following examples were suggested to the authors by Widlund [31]. Here we 
consider the question of computing all of the eigenvalues of each of these example 
matrices. 

EXAMPLE 1 (Worst Case). Let A ,(iJ) = min(i,j). We note that A, = L; ‘L ;‘, 
where L, is bidiagonal with L ,(i, i) = 1 and L,(i, i - 1) = -1, 1 < i < IZ. We consider 
II = 150. 

At IZ = 150, A i has eigenvalues that increase in magnitude from 1, = 0.25 to 
A,,,, = 9180 and more importantly the gaps between successive eigenvalues increase 
monotonically from 8 x low5 at il, to 8000 at 12is0, a gap stiffness of 100 million. As 
m is increased convergence occurs monotonically from A,,, = 9180 down to 
A1 = 0.2500. The smallest eigenvalues, even though they are at the lower extreme of 
the spectrum, converge last. Convergence to at least 5 digit accuracy on all 150 
eigenvalues occurred (m was blindly incremented by >300) by m = 1500 = 10n. 

Thus, in order to achieve convergence on all of the eigenvalues of A,, it is 

TABLE V 

Convergence of Lanczos, A, (Worst Case) 

Order 
TITI 

Number of Eigenvalues Eigenvalues 
eigenvalues accurate0 to accurate’ to 

approximated > 10 digits > 5 digits 

50 30 14 15 
300 19 43 48 
750 119 70 75 

1200 141 98 104 
1500 150 119 150 

’ At m = 50, 300, 750 these counts were obtained from the estimates obtained using Eq. (8) and are 
probably conservative. At m = 1200 and 1500 these counts were obtained by comparison with T,,,,. 
The exact eigenvalues of A, could have been computed and used in this experiment but were not. 
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necessary to use a very large m. Whether or not it makes sense to even use cur 
Lanczos procedure on such a matrix depends upon what the user is tryin 
compute. The eigenvalues at the upper end of the spectrum of AL appear at re~at~~e~~ 
small values of m and can be computed readily by this procedure. See Table V, 

Two comments are important. First, our Lanczos procedure assumes that the 
eigenvalues of the tridiagonal matrices are computed accurately. If the original ~~tr~~ 
A has an eigenvalue distribution that would be difficult for the eigenvalue s~br~~t~~~ 
being used to resolve, then our Lanczos procedure will not be able to perform 
properly. Second, the goodness of the numerical results reported in this paper were ali 
measured by using error estimates. Test results for matrices where we knew the true 
eigenvalues and used them to estimate convergence have also been reported [29], 

If we consider A, = A ;’ then we obtain a “best” case matrix for BUT Lanczos 
procedure. 

EXAMPLE 2 (Best Case). A, =A ;‘, n = 150 and n = 300. 

For n = 150, A, has eigenvalues that vary in magnitude from A, = 1.089 X IO-” to 
A,,, = 3.99956. The corresponding minimal gaps increase monotonically from 
8.7 x 10e4 at ,I1 to maximum of 4.17 x 10e2 at ,I75 and then decrease monoto~~ca~i~ 
to 1.307 X low3 at A.,,,. The minimal gap distribution is fairly uniform. The 
uniform the gap distribution or equivalently the smaller the gap stiffness, the 
easily the Lanczos procedure can compute the desired eigenvalues, in the sense that 
by m not much larger than n all of the eigenvalues of A have been com~ut 
good accuracy. In fact we have the following very interesting results. 

Table VI indicates that a11 of the eigenvalues of A, converge more cr less 
sim~~~eonsly. The extreme eigenvalues of A, converge at approximately the same 
time as the interior eigenvalues, so computing a few extreme eigenvalues is as 
expensive as computing all of the eigenvalues. By m = n all of the eigenva~~es of AZ 
have been approximated to at least 10 digits. This is probably due to the fact that the 

TABLE VI 

Convergence of Lanczos: A, (Best Case) 

Order A, Order Eigenvalues 
n TIE approx. 

Eigerivaiues 
accuratea to 
> 10 digits 

150 50 50 0 
90 90 0 

150 150 150 

300 iO0 100 
200 200 
300 300 

’ Tinese counts are based upon error estimates computed using Eq. (Sj. 

0 
0 

300 
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effect of location of a given eigenvalue in the spectrum is balanced by the gap 
structure. The minimal gaps increase monotonically as we move from the lower 
extreme of the spectrum to the center. They then decrease monotonically as we move 
on out of the center to the upper extreme. With all of the eigenvalues being approx- 
imated at essentially the same rate, there should not be any significant losses in the 
global orthogonality of the Lanczos vectors. Therefore, convergence can be achieved 
in approximately m = n iterations. In this situation, if one wants to compute all or 
many of the eigenvalues of A, then the Lanczos procedure is ideal. 

These tests and others indicate that the matrix gap stiffness, as defined in Eq. (lo), 
is the primary key to understanding the convergence of the Lanczos eigenvalue 
procedure when there is no reorthogonalization of the Lanczos vectors. Tests verify 
that to within the limits of the accuracy of the eigenvalue subroutine used, the 
stiffness of the matrix is not a primary factor in the convergence of the Lanczos 
procedure. This is not unexpected since at least theoretically, the matrices A and 
A + r1 generate the same Lanczos vectors, and thus have the same convergence rates, 
but for an appropriate choice of r, a(A + ~1) will be small even if o(A) is very large. 

Examples 1 and 2 illustrate a tradeoff between using a given matrix A and in using 
its inverse, For Example 1, we had to compute eigenvalues of a tridiagonal matrix of 
size m = 1500 = I&z, whereas for Example 2 we only needed m = n = 150. The 
related apparent decrease in cost must, however, be balanced by the increased cost 
incurred in replacing the A, x computations by the repeated solution of the equation 
A,p = vi. This must be done on each iteration of the recursion in Eq. (1). If for a 
given A, the equation Ax = b can be solved cheaply; and if in fact the gap distribution 
in A-’ is radically superior to that in A, then it is possible that the cost of the 
Lanczos computation can be reduced by replacing A by A -I. However, one should 
note that there may be no gain in using A - * instead of A. For example, if A is of 
order 4 with the eigenvalues 10d6, 10p4, 100, and 10,000, then A-’ has the eigen- 
values 106, 104, 0.01, and 10F4. 

6. COMPUTING AND IDENTIFYING EIGENVALUES OF T,,, 

There are basically two versions of our Lanczos eigenvalue procedure. Computer 
programs are given in [ 191. One version uses the EISPACK [l] program, IMTQLl, 
and the other version uses a modified version of the EISPACK Sturm sequencing 
subroutine BISECT, which we call BISEC. The storage required depends upon which 
version is used, and upon what the user is trying to compute. However, both versions 
require at most a (6m + n/2) double precision array (if m > n), plus whatever storage 
is needed to generate the products Ax. Depending upon what one is trying to 
compute, this storage can be reduced further by modifying the way in which quan- 
tities are handled within the programs. Some ways of doing this are mentioned in 
[191* 

IMTQLl is an implementation of an implicit QL algorithm for computing all of 
the eigenvalues of any symmetric tridiagonal matrix. There is no guarantee that the 
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eigenvalues generated will appear in any particular order, either algebraic or 
magnitude dominant. Thus, even if one wants only a few of the eigenvalues of a,, 
IMTQLl may have to compute all of the eigenvalues just to get those few. As 
programmed, IMTQLI uses two vectors of length NZ. On entry these contain t 
and pi,, arrays. Both arrays are destroyed, and on exit the o-array contain 
computed eigenvalues in ascending order. The computational cost is o(m”>. 

BISEC is a Sturm sequencing procedure, Jennings [S, Chap. 91, and can therefore 
be used to compute the eigenvalues of T,,, in any subinterval. Three vectors of length 
m are needed for the a, p, and p” arrays. Vectors are also needed to store the 
computed eigenvalues of T, and the ru’nning set of upper and lower bounds for the 
eigenvalues being computed on the subinterval being processed. The subinterva~~ 
provided by the user are considered sequentially in algebraically increasing order. 
Starting at the lower end of a subinterval, the procedure computes successively the 
distinct eigenvalues of T, in ascending algebraic order, locating eigenvalues to within 
a given tolerance set by the procedure using the machine epsilon. The rna~bi~~ 
epsilon is the smallest number E which when added to one yields a number not equal 
to one. The Sturm sequencing property states that the number of sign changes in the 
determinants of the successive leading principal minors of a given symmetric matrix 
(2Z - ~1) equals the number of eigenvalues of B that are less than p. By c~nsideri 
two values Et1 < p,, we can compute the number of eigenvalues in the inter 
\~,,~2). These determinants are scale dependent and their use can quickly 1 
either underflow or overflow. Therefore, the procedure uses ratios of these 
minants. 

Numerical tests indicate that for any m, the identification test (A-4) is suficient as 
long some eigenvector corresponding to each eigenvalue of interest has a reasonable 
projection on the starting Lanczos vector 21,. That is, any such $igenvalue of A will 
not be mistakenly labelled as “spurious.” Numerical tests also indicate that the iden- 
tification test can identify all spurious eigenvalues due to losses in orthogo~al~t~. dt 
can in fact, do more than this and, at least for large m, even identify spurious eigen- 
values caused by pathologies in the particular matrix or starting vector chosen. 
“Large” is used in a relative sense and depends upon the given matrix. 

Lewis [32] has constructed a matrix A that does not have 8 as an eigenvalue but 
for which one particular choice of starting vector v, yields matrices T,,, which have oi 
as an eigenvalue whenever m is odd. The corresponding eigenvalues of f2 occur in & 
pairs and whenever m is odd, 0 is not an eigenvalue of ?‘*. The s urious eigenvalne Cl 
is an artifact of the special construction of A and the special choice of 2; 1 ~ 
due to any losses in orthogonality. Initially for ‘“small” m, the Lanczo 
does not recognize 0 as spurious. However, as m is increased and more i 
about A is accumulated in T,, the procedure does in fact recognize 0 as s 
several tests with Lewis matrices of size IZ = 101 or l.007 for any m > 1,3n, the 
“spurious” test labelled 0 as spurious. In fact as m is increased, one observes a pair 
of eigenvalues of p2 converging to 0. Once a member of this pair is within the iden- 
tification tolerance, 0 is labelled as spurious. 

Tt is easy to see that we do not need to compute the p2 eige~v~l~es in order to do 
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the identification test. We are simply trying to determine if there is an eigenvalue of 
?* pathologically close to a given simple eigenvalue ,u of T,. With a properly chosen 
eO, it is sufficient to compute two Sturm sequences, one on the matrix i?z - (U + EJ I 
and the other on ?; - @ - so)1 to determine if fz has an eigenvalue within s0 of ,u. 
We chose E,, relative to the estimated size of the error in the computed ,u. In practice 
we use 

so = 2 x (1000 + m) X machep x Ascale, (13) 

where 

Ascale = m~x(]~i], 1) 

=m~x(lai13 IPi+lL I> 

if all eigenvalues of T,,, are computed 

otherwise. 

In Eq. (13) machep is the machine epsilon. 
If, as in the IMTQLl version of our Lanczos procedure, this test is applied directly 

to each eigenvalue ,U of T,, then the cost is approximately 6m arithmetic operations 
per eigenvalue tested. In the BISEC version, however, this test can be directly incor- 
porated into the eigenvalue computations and the cost is negligible, adding only a few 
extra arithmetic operations per eigenvalue. This is accomplished by doing the Sturm 
sequencing backwards instead of forward. 

It is not a priori obvious that Eq. (13) is a legitimate choice, because we must 
insure that a given eigenvalue of fz is not allowed to eliminate more than one eigen- 
value of T,. If an eigenvalue $ of Fz is in the intersection of the &,-intervals for ,uj 
and pj+ i, then both would be eliminated by that ,G. In the BISEC version this does 
not happen because (i) each isolated ,u, is really the center of an interval [I, uk] 
which defines that eigenvalue: (ii) the distance, 1, - uk-i, between successive eigen- 
values of T,,, is greater than E,,; and (iii) if ,uj is spurious, then the corresponding 
eigenvalue of Tz is typically in the very small interval [Zj, uj]. (If ,uj is good then no 
eigenvalue of T, is within F, of pj.) Thus, in BISEC we can combine the multiplicity 
and spurious tests using the same s0 for both of them. This simplifies the procedure 
considerably. Another way of stating (iii) is simply that if an eigenvalue is spurious, 
then the closest eigenvalue in yz is within the tolerance of the eigenvalue 
computation. In the IMTQLl version, the possibility of overlapping intervals is 
avoided by simply using E,, for the multiplicity tests and co/2 for the identification 
test. For an example of the use of the identification test see Table I. 

In both implementations once a given eigenvalue p of T, has been computed, we 
first determine its numerical multiplicity.. Then if it is numerically simple, we 
determine whether or not it is spurious. In BISEC of course this is all done in one 
computation, 

If in fact, all of the numerically multiple copies of a given eigenvalue ,U of T, were 
computed accurately, and the check for spuriousness were done before the check for 
numerical multiplicity, then not only the “real” spurious eigenvalues would be 
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discarded, but also all except one copy of each numerically multiple eige~vaiue would 
be rejected. Empirical results indicate that the one copy left is the most accurate 

approximation of the several copies. For an example of this see Table VIIb in I33 ]- 
We do not do this. Not only would it be more expensive, but also we would not be 
able to get meaningful error estimates. In particular, in BISEC only one copy of each 
numericaIIy multiple eigenvalue is computed, and since it is the first copy we 
encounter, it is not necessarily the most accurate of the multiple copies. 

Once the “good” eigenvalues are identified, we must estimate their accuracy. In 
Section 7 we give two ways for computing error estimates for simple “good” eigen- 
values. These estimates, however, are not valid for numerically multiple eigenval~es 
or for eigenvalues that are being replicated. However, numerically multi.ple eigen- 
values are accurate approximate eigenvalues of A, 1261, so there is no reason to 
compute error estimates on them. Moreover, eigenvalues do not normally begin to 
replicate until they have converged. This observation is in agreement with the result 
of Paige 121 that the losses in orthogonality observed are due to convergency of 
eigenvalues of T,,, to eigenvaiues of A. 

In determining multiplicities, small ambiguities may occasionally occur b~ca~~~ we 
can only estimate the accuracy of the tridiagonal eigenvalue computations. It is 
possible for two “good” eigenvalues that agree to I0 digits or more to be labeiled as 
distinct. Therefore, after the eigenvalue computations and the 
i~enti~catio~/muitiplicity tests, and before computing the error estimates, we go 
through the list of “good” eigenvalues and combine eigenvalues that differ from each 
other by less than a user-specified tolerance, RELTOL. Specifically, two eige~va~~es 
~j and pj+r are combined if 1,~~ -,u~+~ j/max(jpj], 1) < RELT e average the 
“good)’ eigenvalues that have been lumped together, weighting the eigenval~e~ by 
their multiplicities. The numerical multiplicity is increased accordingly and this count 
included any spurious eigenvalues. Error estimates are then computed only on the 
“simple” good eigenvalues. 

Our Lanczos procedure uses the matrix FZ to identify those eige~val~es of Tm that 
are spurious. The remaining eigenvalues of T,,, are taken as rox~mati5ns to eigen- 
values of A. The related procedures, van Kats and van d Vorst (15, 161, an 
Edwards et al. [ 181 approach the identification problem differently. Instead of trying, 
to identify which eigenvalues should be discarded, they try to identify which eigen- 
values have converged to within a user-specified tolerance. These eigenvalue then 
accepted. The eigenvalues that do not satisfy their respective tests are discar van 
Mats and van der Vorst compute the relevant eigenvalues of both T, and of T,_ 1 and 
then compare them. Basically, any eigenvalue of T, that is also an eigenvalue of 
T,-1, to within a user-specified tolerance, is accepted as a good approximation to an 
eigenvalue of A. Edwards et al. compute only the eigenvalues of T,. If for some 
k < m there are at least two eigenvalues of T, in a user specified, tolerance interval 
about an eigenvalue p of T, or if a root trapping condition is satisfied on that 
interval for Tk, then ,D is accepted as a good approximation to an eigenvalue of A. 
The other eigenvalues of T, are rejected. Thus, at a given m, for either of those two 
algoritbms~ one can expect to have identified only those ~i~e~v~i~~s that have 
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converged to within the specified tolerance. Eigenvalues of T, that are fairly good 
approximations to eigenvalues of A may not have converged sufficiently to be iden- 
tified. If we relax the tolerance used in this identification to help identify “good” 
eigenvalues before they have fully converged, then we may combine a “good” eigen- 
value with a nearby “spurious” one and thereby reduce the accuracy of the resulting 
combined eigenvalue approximation. With the fZ test, on the other hand, we only 
throw away spurious eigenvalues. “Good” eigenvalues, even if they are accurate to 
only a few digits, will be retained. Thus, we are able to estimate the degree of 
difficulty in computing the remaining desired eigenvalues. We get a clearer picture of 
the overall eigenvalue distribution in the original matrix. 

7. ESTIMATING CONVERGENCE 

Two different types of error estimates for the simple, isolated, good eigenvalues are 
considered. Numerically multiple eigenvalues of T, are converged approximations to 
eigenvalues of A. Moreover, any “good” eigenvalue of T, with a spurious eigenvalue 
close to it is also accurate. 

Various forms of an error bound were given in Eqs. (7) and (8). For reasonable 
size m and ((A/(, E, in Eq. (7) is the key to estimating convergence. Furthermore from 
Paige [2], we have that /) VxjJ > 0.5 for isolated eigenvalues ,u, so that Eqs. (7) and 
(8) provide a bound on the error in each of these computed eigenvalues. In practice 
this bound is a good but conservative reflection of the error in such eigenvalues. 

The IMTQLI version of our procedure computes all of the eigenvalues of T,. 
Within this version there are two options, one of which also computes all of the 
eigenvalues of f2, and the other which does the identification of spurious eigenvalues 
by Sturm sequencing. If all of the eigenvalues of pZ are available, then we can use Eq. 
(8). From Eq. (8) we have that 

(14) 

Only the denominator of E, is a function of y, and it is computed by taking multiples 
of differences of eigenvalues of the T, and of f2. The numerator and denominator 
can both be very small or very large depending upon the scaling in the original 
matrix A. For example, for a test matrix of order it = 4,900 with m = 29,400 = 6n, 

29,400 

kc2 l&l = 0.14 x 16263445. 

The ratio ep, however, is well-behaved. We use scale invariant arithmetic, to compute 
E, in Eq. (14), working separately with the mantissa and the exponent of each factor 
in the products. This approach to estimating errors in the computed eigenvalues is 
very expensive because it requires two large eigenvalue computations. 
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A less expensive approach is to compute the related eigenvectors of T,, and then 
to use the corresponding mth components of these vectors directly in Eq. (7). These 
eigenvectors can be computed using inverse iteration on T, (Peters and Wilkinson 
(341). Even though we only want the last component, we must compute the entire 
eigenvector because we need the mth component of the unit eigenvector 
corresponding to pu. For reasonably well-separated good eigenvalues with no nearby 
spurious eigenvalues, this approach yields good estimates of the error. 

Theoretically, this approach and the one using all of the eigenvalues of both 
matrices yield the same estimates of the error. In practice, they yield a~~roxi~~te~y 
the same estimates unless there are spurious eigenvalues close to the good eige~va~~e 

TABLE VII 

POIS1008, Comparison of Error Estimates with True Error 

Order Computed 
Tm eigenvalue 

Error estimate 
inverse iteration 

on T, True error 

m= 1008=n 1.6606618191 9.4 x 10-j 1.1 x lo-” 
1.6614072619 1.6 x lO-* 6.4 x lo-’ 
1.6688217735 1.5 x 10-3 2.6 x !Om6 
1.6719607187 1.0 x 1o-3 2.7 x 1O-5 
1.6741447482 8.6 x 1o-4 1.7 x lo-” 
1.6923622232 2.2 x 1o-4 5.2 x 10-s 
1.6951062486 1.7 x 1o-4 2.9 x 1o-s 

m= 1126= 1.117~ 0.2690507887 8.6 x 1o-“3 3.3 x lo-” 
0.2824386303 1.0 x lo-* 6.2 x lo-l3 
0.3 17 1884350 1.7 x 10-s 2.5 x IO-!’ 
0.3190091584 6.7 x lo-’ 5.8 x lQ-” 
0.3228590426 5.0 x 10-4 5.2 x lo-* 
0.3576650427 2.2 x 10-3 6.0 x lo-” 
0.3628420891 3.6 x PO-’ 8.9 x lo-’ 
0.3633926493 1.8 x 1O-3 1.2 x 1o-4 
0.3640244896 2.5 x 10-l 5.1 x 1o-4 
0.3688971202 9.7 x 1o-A 1.4 x 1o-8 
0.4839359213 5.6 x lo-’ 3.1 x 1o-4 
0.4842754360 9.2 x 10-4 I.8 x lo-’ 
0.847549855 1 7.9 x 10-4 6.6 x 1o-8 
1.6719874543 5.9 x lo-” 5.3 x lo-’ 
1.6741464513 1.8 x 1O-5 4.9 x lo-l0 
1.6923622747 4.3 x lo-’ 6.6 x lo-j4 
1.695 1062773 3.0 x lo-’ 2.1 x IO-‘! 

m = 1512 = 1.5n 1.6607681953 4.0 x 1o-8 9.8 x 10-l’ 
1.6620674206 4.2 x lo-‘* 2.4 x IO-l3 
1.6688243645 1.7 x lo-l3 2.1 x lo-l3 
1.6718896888 1.0 x lo-‘* 2.3 x 1wi3 
1.6719879819 6.3 x lo-l3 1.8 x PO-l3 
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being considered. In Table VII, we give a comparison of the computed error estimates 
using inverse iteration on T, and the true errors in the computed eigenvalues for a 
test matrix of order n = 1008. See [26] for a description of this Poisson test matrix. 
The eigenvector computation requires less than 10m arithmetic operations per eigen- 
value tested. A slightly modified form of the EISPACK [I] subroutine TINVIT was 
used to do the inverse iteration. 

We have observed numerically that within a given subinterval of the spectrum, 
convergence occurs primarily according to minimal gap size. Therefore, we do not 
need to compute error estimates on every computed eigenvalue. It is sufficient to 
compute estimates for some representative selection of the computed good eigen- 
values with small gaps. 

Convergence is said to have occurred when the error estimates on all of the 
isolated good eigenvalues in the desired subintervals of the spectrum are small 
enough. In practice, it is typically true that the actual error is a factor of 100 or more 
smaller than the error indicated by the error estimate, whenever the error estimate 
indicates convergence of a given eigenvalue to eight or less digits. 

8. CONVERGENCE,~LLUSTRATED BY EXAMPLE 

For a given matrix A and a corresponding Lanczos tridiagonal T,, the question of 
whether or not a given subset of the eigenvalues of A can be approximated by eigen- 
values of T,, depends primarily upon the gap structure in the matrix A and upon the 
relative locations of these eigenvalues in the spectrum of A. The effects of the choice 
of the Lanczos starting vector Y,, of scaling the matrix (replacing A by aA) or of 
shifting the matrix, (replacing A by A + 01) all seem to be secondary; see [33]. In 
addition, examples in [33] indicate that different implementations of the Ax matrix- 
vector multiply subroutine lead to very different IX, /3 sequences, but that there are no 
significant differences in the actual convergence of the eigenvalues as a function of m. 
In exact arithmetic one would expect no difference in convergence, but this insen- 
sitivity also seems to be valid in practical computations. Without this insensitivity, 
the Lanczos procedure would not be very attractive. 

To eliminate the possibility that the observed convergence of our procedure was 
due to some hidden structural properties of the test matrices, we ran some tests on 
matrices whose sparsity patterns and entries were determined randomly. Tests 1 
through 5 used a uniform distribution. Tests 6 through 9 used a Gaussian 
distribution. The results of several of these tests are given in Table VIII. 

To test the effectiveness of this procedure on very large matrices, we ran tests on 
two large diagonally disordered matrices obtained from Kirkpatrick [30]. One of 
these was of order 12 = 1600 and we denote it by KIRK1600. The other one was of 
order 12 = 4900 and we denote it by KIRK4900.’ A matrix-vector subroutine that 
generates Ax for each of these matrices is included in [ 191. Matrices of this type arise 
in the study of two-dimensional arrays of atoms in disordered systems; see, e.g., 
Kirkpatrick and Eggarter [35] and Hori [36] for details. Both matrices have order 
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TABLE VIII 

Observed Convergence on Randomly Generated Matrices, II = 100. 
Tests 1-5, Uniform Distribution, Tests 6-9, Gaussian Distribution 

Test Order 
No. TIPi 

Number Error Number 
good estimates multiple 

eigenvalues <lo-” eigenvahes 

P 
RANDOM 1 
nnzeroil = 5 
rseedQ = 35613297 

3 
RANDOM3 
nnzero = 11 
rseed = 215372912 

RANDOM4 
nnzero = 3 5 
rseed = 93262178 

5 
RANDOMG 1 
nnzero = 5 
rseed=35613297 

8 
RAIdDOMG3 
nnzero = 11 
rseed = 5 12743219 

50 
100 
150 
200 

50 
100 
150 

50 
100 
150 

50 
100 
150 
200 

50 
100 
150 

50 
87 

100 
100 

50 
89 

100 

50 
90 

100 

50 7 0 
84 29 7 

!OO 17 23 
loo 100 32 

50 i 0 
90 26 4 

100 100 18 

5 
31 
81 

100 

3 
24 

100 

1 
25 

100 

0 
5 

23 
36 

0 
5 

19 

0 
4 

18 

’ nnzero is the average number of nonzero entries in each row and column. rseed is the seed used by 
the random number generator to generate the locations and values of the nonzero entries. 

rs = NX x NY, where NX is the number of rows of atoms in the lattice being 
considered and NY is the number of atoms in each row. If NX and NY are re~~t~ve~y 
prime, then all of the eigenvalues are distinct. Each matrix is almost block 
tridiagonal. Each subblock is NY X NY and there are NX blocks Bj down the 
diagonal. Off-diagonal blocks C are unit matrices of order NY. ~~~~~~~al~y~ 
structure of each of the two test matrices is as follows. 

The diagonal entries of each Bj are denoted by x’s. Each such entry is either 
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TABLE IX 

KIRK1600, Convergence of Representative Eigenvalues 
from the Desired Intervals (0.1, 0.9) and (1.1, 1.9) 

No. 

Tl?l 
- 

Computed “good” 
eigenvalue 

1 0.108538583112 7.88 x 1O-3 
2 0.116416158091 2.16 x lo-’ 
4 0.125695041582 2.89 x 1O-4 
5 0.125984202306 2.89 x 1O-4 
6 0.131418112867 1.35 x 10-j 
8 0.140411147900 4.55 x 10-3 

10 0.150454046930 1.83 x 1O-3 
12 0.159800239400 5.49 x 10-3 
16 0.111438341611 4.22 x 10-j 
19 0.190218830700 4.28 x 1O-4 
20 0.190646629966 4.28 x 1O-4 
22 0.200427830536 1.42 x lo-’ 
23 0.206726824 189 6.31 x lo-’ 
24 0.215522650233 8.80 x 10-3 
25 0.226869995768 9.31 x 1o-4 
26 0.227801354882 9.31 x 10-4 
21 0.233284125230 4.99 x 1o-3 
31 0.284620457955 2.94 x 10-4 
38 0.284914076578 2.94 x 1O-4 
39 0.281331647984 2.42 x lo-’ 
42 0.301819018495 4.90 x 10-l 
50 0.337456734943 1.75 x 10-3 
51 0.340359554960 2.90 x 1o-3 
52 0.345027218837 4.24 x 1O-3 
53 0.349263240798 4.24 x 1O-3 
61 0.394564131019 5.83 x lo-’ 
15 0.458740930982 1.49 x 10-3 
76 0.460646869314 1.91 x 1o-3 
II 0.463079289643 8.74 x 1O-4 
78 0.463952947950 8.74 x 1O-4 
19 0.469996198976 2.07 x lo-’ 
84 0.487543746200 3.37 x 1o-3 
85 0.491162147199 1.90 x 1o-3 

194 1.22970513552 4.21 x 1O-4 
195 1.23316155483 3.46 x lo-’ 
196 1.24376265893 9.50 x 10-3 
197 1.25326700199 8.10 x lo-’ 
208 1.31796912319 2.01 x 10-3 
209 1.31997989839 2.01 x 10-3 
210 1.33085004976 1.09 x 1o-2 
211 1.35121009484 6.86 x 1o-3 

Amingap 
- 

T, error estimates 

m=2n 

6.2 x IO-' 
8.4 x 1O-4 
5.7 x 10-j 
8.4 x lo-* 
2.7x lo-' 
1.2 x 10-l 
4.4 x 1o-2 
6.4 x JO-’ 
1.3 x 1o-2 
1.2 x 10-2 
1.4 x 10-l 
9.0 x 10-3 
7.7x 10-3 
3.6 x 1O-3 
1.9 x 1o-2 
1.9 x lo-* 
1.5 x 10-l 
6.5 x 1O-2 
6.5 x lo-* 
6.7 x lo-* 
5.8 x 1O-2 
1.8 x 1O-2 
2.7 x lo-’ 
1.7 x 10-l 
1.7 x 10-I 
1.4 x 10-Z 
5.3 x 10-Z 
5.3 x 1o-2 
7.7 x 10-z 
7.7 x 10-2 
1.5 x 10-I 
4.4 x lo-* 
8.9 x 1O-2 
2.5 x lo-* 
1.4 x 1o-4 
2.0 x lo-’ 
1.3 x 1o-6 
2.3 x 1O-9 
7.2 x 10-l’ 
3.6 x IO-" 
4.2 x lo-” 

m = 3n 

1.7 x 10-E 
1.5 x 10-l’ 

4.7 x 1o-9 
2.9 x 1O-9 
2.1 x lo-lo 
1.3 x lo-” 
1.9 x lo-” 
6.8 x lo-" 
1.7 x 10-l 
3.6 x IO-" 
1.6 x IO-*' 
7.5 x 10-J' 
4.6 x IO-" 
2.2 x lo-j0 
2.1 x lo-” 
2.6 x IO-" 
5.4 x lo-" 
2.2 x 10-9 
7.3 x lo-lo 
1.6 x IO-” 
9.9 x 1o-‘l 
2.8 x 10-l’ 
4.2 x lo-” 
6.1 x IO-" 
1.5 x lo-lo 
7.3 x 1o-'2 
4.4 x 10-g 
3.1 x 10-n 
2.0 x lo-’ 
9.3 x 10-8 
1.7 x 10-g 
1.0 x lo-’ 
5.4 x 10-l 
6.9 x 10-l' 
7.3 x lo-l2 
1.2 x lo-‘O 

4.9 x 10-l’ 
1.3 x lo-” 
1.5 x lo-‘0 
7.5 x 10-l’ 
1.2 x 1o-8 

Table continued 
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TABLE IX--Continued 

No. 
Tin 

Computed “good” 
eigenvalue Amingap 

212 1.35807260268 5.11 x 1o-3 
224 1.42478180911 1.84 x 1O-3 
228 1.44221149920 2.85 x lO-3 
229 1.44137404951 3.81 x 1O-3 
230 1.45118307212 2.01 x lo-3 
231 1.45318924956 2.01 x lo-3 
235 1.48529412782 4.82 x 10-l 
237 1.49507705 148 1.97 x 10-3 
238 1.49704459217 1.97 x 10-3 
239 1.50095617662 2.31 x lo-’ 
240 1.50327060040 2.31 x 10-j 
241 1.5 1449833393 9.75 x 1o-3 
246 1.55 118529474 8.17 x 1O-3 
241 1.55935806886 4.90 x 10-3 
253 1.59459760414 2.73 x lo-’ 
259 1.62312291087 1.79 x lo-’ 
261 1.63206807498 4.93 x 1o-3 
269 1.68524491144 2.33 x 10m3 
212 1.69772589111 7.03 x 1o-3 
216 1.73644464833 2.11 x 1o-3 
282 1.77045953991 5.38 x lo-3 
284 1.78224457221 6.08 x 1O-3 
285 1.79998356852 1.40 x lo-) 
289 1.81850663242 5.19 x 10-J 
296 1.84876906280 2.21 x 10-3 
300 1.87276141363 6.22 x lO-3 

T, error estimates 

m = 2n m = 3n 

8.4 x lo-” 
4.8 x lo-* 
1.1 x 10-6 

4.3 x 10-8 
1.5 x 1o-6 
7.0 x lo-8 
6.2 x IO-” 
3.5 x IF9 
1.5 x 10-9 
6.8 x lO-9 
4.6 x IO-” 
2.1 x lo-” 
3.5 x lo-‘2 
1.4 x lo-” 
1.3 x 1o-9 
2.9 x lo-” 
8.1 x 10-l’ 
4.7 x 10 -I0 
4.6 x IO-” 
2.1 x lo--*’ 
1.3 x 10-l” 
1.2 x 1o-9 
2.7 x lQmxl 
3.3 x 10-I’ 
2.9 x 10-l’ 
4.4 x 10-l’ 

5.2 x 10-l” 
3.1 x lo-‘! 
2.6 x 10-l’ 
4.0 x lo-” 
6.5 x 1W’” 
3.5 x lo-” 
4.8 x lo-‘” 
7.4 x lo-” 
1.7 x 1o-‘o 
1.1 x 3om10 
I.4 x 10 -8 

2.5 x 10-x 
3.2 x IO-’ 
1.9 x lo-‘0 
7.9 x lo-l2 
1.2 x io--‘l 
4.0 x lo--‘” 
1.8 x lo-‘! 
3.8 x lo-” 
1.9 x 10~” 
1.1 x lo-q 

4.0 x lo-’ 
1.7 x lo-!’ 
1.8 x io-1’ 
2.8 x lo-“’ 
5.9 x 10 -Ii 

quantity which we call SCALE. When A is constructed, this determination is made 
by calling a random number generator to produce numbers dp between 0 and I. If a 
given R > CONC, where CONC is a concentration specified by the user, then the 
corresponding diagonal entry in Bj is set equal to SCALE, otherwise it is set equal to 
0. The random number generator is called n times to generate the diagonal of A. All 
of the nonzero off-diagonal entries are 1. For KIRK 1600, AX = 40, NY = 40, 
CONC = 0.7, and SCALE = 100. For KIRK4900, NX= IO, NY= 70, C 
and SCALE = 100. 

KIRK1600 was analyzed in detail. For m = 4800 = 3n we computed all of the 
eigenvalues of T,,, and of PI, and then used Eq. (8) to compute error estimates on the 
isolated eigenvalues. The eigenvalues of KIRK1600 range from 3.511 to 102.37. 
There are no eigenvalues in the interval (3.499, 97.67). At m = 3n = 4808, 146~8~ 
eigenvalues are being approximated. Convergence to at least nine digits is ob~~~v~~ 
on all eigenvalues except the eigenvalues in six small subintervals. One of these subin- 
tervals contains 0 and convergence is not indicated on any of the eigenvalues in this 

581/44/2-S 
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TABLE X 

KIRK4900, m = 3n, Convergence of Representative Eigenvalues” 

NO. 

=, 

Computed “good” 
eigenvalue 
atm=3n 

Computed 
Amingap 
m = 4n 

T, error 
estimates 
atm=3n 

1 0.100184031023 9.286 x 1O-4 
2 0.101112591037 9.286 x 1O-4 
3 0.102424974865 1.312 x lo-’ 
4 0.105801742503 5.928 x 1O-4 
5 0.106394577433 5.928 x 1O-4 
6 0.111238683033 4.844 x lo-’ 
7 0.117388719646 5.052 x 1O-3 

18 0.138395951209 3.499 x 1o-4 
19 0.138745818377 3.499 x 10-4 
20 0.139454780546 6.850 x 1O-4 
21 0.140139782448 6.850 x 1O-4 
22 0.140923659251 7.839 x 1O-4 
23 0.143861863324 1.458 x 1O-3 
24 0.145320292214 1.458 X 1o-3 
25 0.147933650495 2.613 x 1O-3 
41 0.18550535473 1 1.752 x 1O-3 
48 0.187954892215 5.484 x 1O-4 
49 0.188503244058 5.484 x 1O-4 
50 0.190634629045 6.772 x 1O-4 
51 0.191311829686 6.772 x 1O-4 
52 0.192128425044 8.166 X 10-4 
53 0.196343799587 1.230 x 1O-3 
54 0.197573805750 1.230 x 1O-3 
55 0.199219542593 1.645 x 1O-3 
56 0.204191078888 9.592 x 1om4 
51 0.205150265749 9.592 x 1o-4 
58 0.207405684118 1.312 x 1O-3 
59 0.208717725117 6.860 x 1o-4 
60 0.209403689072 6.860 x 1o-4 
88 0.265882212765 1.526 x 1O-3 
89 0.267408323794 1.159 x 10-3 
90 0.268567699576 4.441 X 1o-4 

179 0.399275258168 6.111 x 1O-4 
180 0.401048914269 1.774 x 10 -3 
219 0.462776965800 1.499 X 1o-4 
220 0.464964879878 6.365 x 1O-4 
221 0.465601349313 6.365 x 1O-4 
222 0.466617916442 1.017 x lo-’ 
223 0.4694263 16630 7.622 x lo-’ 
224 0.469502542959 7.623 x IO-’ 

1.3 x 10-s 
9.2 x lo-‘* 
1.2 x lo-‘0 
8.8 x lo-” 
3.6 x IO-” 
2.7 x 10-s 
1.6 x 10-s 
6.1 x lo-” 
2.2 x 10-9 
2.6 x 1O-9 
5.7 x lo-‘0 
2.8 x 10-r’ 
6.1 x 10-l’ 
7.4 x lo-lo 
1.6 x lo-” 
1.1 x 10-l’ 
4.0 x 1o-‘O 
1.0 x lo-‘0 
3.9 x 10-10 
7.4 x 10-9 
1.1 x 10-s 
9.3 x 10-l’ 
1.7 x 1o-9 
1.6 x 1O-9 
2.9 x IO-” 
3.9 x lo-” 
3.4 x 10-9 
2.6 x 10-l’ 
1.0 X 10-10 
3.3 x 10-i’ 
3.3 x 1o-9 
1.1 x 1o-9 
4.2 x lo-* 
2.8 x 1O-9 
1.4 x 1o-6 
7.7 x 10-g 
3.0 x lo-’ 
7.0 x 10-9 
7.7 x lo-’ 
3.1 x lo-’ 

T, error/ 
Amingap 

1.4 X 10-5 
9.9 x 1o-9 
9.2 x lo-* 
1.5 x 10-7 
6.1 x IO-* 
5.6 x 1O-6 
3.2 x 1O-6 
1.7 x 10-6 
6.3 x 1O-6 
3.8 x 1O-6 
8.3 x IO-’ 
3.6 x lo-’ 
4.2 x 1O-9 
5.1 x lo-’ 
6.1 x 1O-8 
6.3 x IO-* 
7.3 x lo-’ 
1.8 x lo-’ 
5.8 x lo-’ 
1.1 x 1om5 
1.4 x 1o-5 
7.6 x 10-s 
1.4 X 10-6 
9.7 x lo-’ 
3.0 x lo-* 
4.1 x lo-* 
2.6 x 1O-6 
3.8 x 10-s 
1.5 X 10-7 
2.2 x lo-* 
2.9 x lo+ 
2.5 x 1O-5 
6.9 x lo-’ 
1.6 x 1O-6 
9.3 x 1o-3 
1.2 X 1o-4 
4.7 x 1o-4 
6.9 x 1O-6 
1.0 x lo-* 
4.1 X 1o-3 

a Computed eigenvalues at m = 3~ differ from the corresponding computed eigenvalues at m = 4n in 
at most the 10th digit. 

Table continued 
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computation was repeated at m = 3n and at m = 4n. The latter computation was just 
to verify for unbelievers that all the eigenvalues had converged. All of the good eigen- 
values computed at m = 3n agreed to at least 10 digits with the good eigenvalues 
computed at m = 4~2. Some of the results of this computation for the subinterval (0.1, 
0.9) are given in Table X. The corresponding results for the subinterval (1.1, 1.9) are 
given in Table XIV in [33]. The eigenvalues in this latter subinterval converged 
slightly more quickly than the eigenvalues in (0.1, 0.9). We again list representative 
good eigenvalues, their computed minimal A-gaps, and the corresponding error 
estimates obtained using inverse iteration on T, at m = 3n = 14,700. The storage 
requirements at m = 3n = 14,700 were approximately 750K bytes. These results 
demonstrate conclusively that the proposed procedure can be used on very large 
matrices. 

9. SUMMARY 

We have described in detail a Lanczos algorithm for computing distinct eigen- 
values of large symmetric matrices; see [ 191 for the computer programs. There are no 
restrictions on A other than it is symmetric and that the matrix-vector multiplications 
Ax must be performed accurately and rapidly. There are no restrictions on the 
distribution of the eigenvalues of A. However, this distribution determines the amount 
of computation required. The storage requirements are linear in the order of A, if the 
storage requirements for generating the products Ax are linear in n. Thus, for such 
matrices, our procedure is feasible even for very large ~1. There is no 
reorthogonalization of any vectors. It should be emphasized that we cannot compute 
the multiplicities of multiple eigenvalues using this approach. However, an indication 
of the true multiplicities may be obtainable from related eigenvector computations if 
one is willing to do the additional computation required ([37 I). This, however, does 
not seem to be practical because of the extra computation. 

In the BISEC version of our procedure which simultaneously determines numerical 
multiplicities and performs the identification test, the eigenvalue computations 
required after T, is generated, reduce to slightly more work than the computation of 
the relevant eigenvalues of T,,,. 

This procedure can be used to compute a few or many eigenvalues. Once the 
desired eigenvalues are computed the procedure described in [20] can be used to 
compute associated eigenvectors. The eigenvalue procedure can also be used to 
determine whether or not there are any eigenvalues in a given sub-interval, and where 
there are clusters of eigenvalues. 

Another interesting use of this procedure is for computing singular values of 
nonsymmetric or rectangular matrices. This application is discussed in Cullum and 
Willoughby [ 381. 

In the Introduction we stated that our procedure could be directly applied to 
Hermitian matrices. Therefore, before terminating we briefly consider this case. Let 
H = R + iC denote a Hermitian matrix, where R denotes the real part of H and C 
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denotes the imaginary part. Since H is Hermitian, R = R* and C = -CT. That is, R 
is symmetric and C is skew-symmetric. 

Our eigenvalue procedure can be used directly on H without any modi~c~tio~s by 
applying it to the related real symmetric matrix 

This follows because solving Hz = AZ with z = u + iw is equivalent to so~v~~~ 
Ax = dx with xT = (Us, w’). 

The matrix A in Eq. (16) is of order n = ZN, where N is the order of 
show, however, that at least theoretically, the storage and the amount of ~orn~ut~t~~~ 
required to use A in Eq. (16) are identical to what is required if we apply the 
Hermitian analog of the Lanczos recursions directly to Ii. Moreover, the tridiago~a~ 
matrices generated using both approaches are the same. Thus the use of A in Eq. (1.6) 
in place of H is just as computationally efficient and allows us to work in real 
arithmetic. Using A in Eq. (16), is just the result of storing the real and ~rnag~~a~y 
parts of the Lanczos vectors in separate real arrays. 
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